Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2010 Jul;299(1):F121-7. doi: 10.1152/ajprenal.00074.2010. Epub 2010 Apr 21.

Glycated albumin upregulates upstream stimulatory factor 2 gene transcription in mesangial cells.

Author information

Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.


Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. We previously demonstrated that a transcription factor called upstream stimulatory factor 2 (USF2) was upregulated in the kidneys from diabetic animals in vivo as well as in mesangial cells (MCs) exposed to high-glucose media in vitro. USF2 mediates glucose-induced thrombospondin 1 expression and transforming growth factor-beta activity in MCs and plays a role in DN. Glycated proteins have been shown to accumulate in the kidneys of diabetic patients and contribute to DN. However, whether glycated proteins regulate USF2 expression in MCs and play a role in DN is unknown. In the present studies, we determined the effect of glycated albumin on UFS2 gene expression in primary rat MCs. We found that glycated albumin upregulated USF2 expression (mRNA and protein) in a dose- and time-dependent manner. We also demonstrated that glycated albumin stimulated USF2 gene expression at the transcriptional level. By using the luciferase-promoter deletion assay, site-directed mutagenesis, and transactivation assay, we identified a glycated albumin-responsive region in the USF2 gene promoter (-837 to -430, relative to the transcription start site) and demonstrated that glycated albumin-induced USF2 expression was mediated through NF-kappaB-dependent transactivation of the USF2 promoter. Furthermore, glycated albumin increased nuclear NF-kappaB subunit-p65 protein levels. siRNA-mediated p65 knockdown prevented glycated albumin-induced USF2 gene expression (promoter activity, mRNA, and protein levels). Taken together, these data suggest that glycated albumin upregulated USF2 gene transcription in MCs through NF-kappaB-dependent transactivation of the USF2 promoter.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center