Format

Send to

Choose Destination
See comment in PubMed Commons below
J Appl Microbiol. 2010 Sep;109(3):1067-75. doi: 10.1111/j.1365-2672.2010.04732.x.

Development of a homologous expression system for rubber oxygenase RoxA from Xanthomonas sp.

Author information

1
Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany.

Abstract

AIMS:

Natural rubber (poly-[cis-1,4-isoprene]) can be cleaved into 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al by rubber oxygenase A (RoxA) isolated from Xanthomonas sp. RoxA is a novel type of dihaem dioxygenase with unknown cleavage mechanism of the rubber carbon backbone. Analysis of mutant RoxA after mutagenesis could be a way to investigate the function of selected amino acids of RoxA during catalysis. Unfortunately, expression of functional RoxA in recombinant Escherichia coli or in recombinant γ-Proteobacteria such as Pseudomonas putida was not possible in our hands. Therefore, expression of recombinant RoxA in the homologous host, Xanthomonas, was performed.

METHODS AND RESULTS:

A transformation system via electroporation was established, and a conjugation system was optimized for Xanthomonas sp. Inactivation of the chromosomal roxA gene by insertional mutagenesis resulted in inability of Xanthomonas sp. to produce active RoxA and to utilize rubber as a sole source of carbon and energy. When an intact copy of roxA was cloned under control of a rhamnose-inducible promoter in a broad host range vector and was transferred to Xanthomonas sp., high expression levels of functional RoxA in the presence of rhamnose were obtained.

CONCLUSIONS AND SIGNIFICANCE AND IMPACT OF THE STUDY:

Purification of recombinantly expressed RoxA was simplified because of drastically shortened fermentation times and because separation of RoxA from remaining rubber latex particles was not necessary with rhamnose-induced cultures. About 6 mg purified RoxA were obtained from 1 l of cell-free culture fluid. Purified recombinant RoxA was highly active and revealed comparable spectral properties as RoxA purified from the wild type. The results of our study are the methodical basis for molecular biological manipulation in Xanthomonas sp. and will simplify investigation into the biochemical mechanisms by which rubber can be biodegraded in the environment by this novel extracellular dihaem dioxygenase RoxA.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center