Format

Send to

Choose Destination
J Med Chem. 2010 May 27;53(10):4110-8. doi: 10.1021/jm1001452.

4-hydroxy-1,2,5-oxadiazol-3-yl moiety as bioisoster of the carboxy function. Synthesis, ionization constants, and molecular pharmacological characterization at ionotropic glutamate receptors of compounds related to glutamate and its homologues.

Author information

1
Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy.

Abstract

In order to investigate the 4-hydroxy-1,2,5-oxadiazol-3-yl moiety as a carboxylic acid bioisoster at ionotropic glutamate receptors (iGluRs), a series of acidic alpha-aminocarboxylic acids in which the distal carboxy group was replaced by the 4-hydroxy-1,2,5-oxadiazol-3-yl group was synthesized. Ionization constants were determined. All target compounds, except the Asp analogue 12, were resolved using chiral HPLC. Whereas 12 showed good affinity exclusively at NMDA receptors, the Glu analogue, (+)-10, was an unselective, though potent AMPA receptor preferring agonist (EC(50) = 10 microM at iGluR2) showing only low stereoselectivity. The two higher Glu homologues, (+)-15 and (+)-18, turned out to be weak agonists at iGluR2 as well as weak antagonists at NR1/NR2A, whereas the corresponding (-)-isomers were selective NR1/NR2A antagonists with somewhat higher potency. The results proved the 4-hydroxy-1,2,5-oxadiazol-3-yl moiety to be a useful bioisoster at all three classes of iGluRs, capable of being integrated into agonists as well as antagonists.

PMID:
20408529
DOI:
10.1021/jm1001452
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances

Supplemental Content

Full text links

Icon for American Chemical Society Icon for University of Turin Instituional Repository AperTO
Loading ...
Support Center