Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2010 May 15;123(Pt 10):1684-92. doi: 10.1242/jcs.061556. Epub 2010 Apr 20.

BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo.

Author information

1
Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.

Abstract

Members of the bone morphogenetic protein (BMP) family have been implicated in the development and maintenance of vascular systems. Whereas members of the BMP-2/4 and osteogenic protein-1 groups signal via activin receptor-like kinase (ALK)-2, ALK-3 and ALK-6, BMP-9 and BMP-10 have been reported to bind to ALK-1 in endothelial cells. However, the roles of BMP-9-ALK-1 signaling in the regulation of endothelial cells have not yet been fully elucidated. Here, using various systems, we examined the effects of BMP-9 on the proliferation of endothelial cells. Vascular-tube formation from ex vivo allantoic explants of mouse embryos was promoted by BMP-9. BMP-9, as well as BMP-4 and BMP-6, also induced the proliferation of in-vitro-cultured mouse embryonic-stem-cell-derived endothelial cells (MESECs) by inducing the expression of vascular endothelial growth factor receptor 2 and Tie2, a receptor for angiopoietin-1. A decrease in ALK-1 expression or expression of constitutively active ALK-1 in MESECs abrogated and mimicked the effects of BMP-9 on the proliferation of MESECs, respectively, suggesting that BMP-9 promotes the proliferation of these cells via ALK-1. Furthermore, in vivo angiogenesis was promoted by BMP-9 in a Matrigel plug assay and in a BxPC3 xenograft model of human pancreatic cancer. Consistent with these in vivo findings, BMP-9 enhanced the proliferation of in-vitro-cultured normal endothelial cells from dermal tissues of adult mice and of tumor-associated endothelial cells isolated from tumor xenografts in host mice. These findings suggest that BMP-9 signaling activates the endothelium tested in the present study via ALK-1.

PMID:
20406889
DOI:
10.1242/jcs.061556
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center