Format

Send to

Choose Destination
Photosynth Res. 2011 Jan;107(1):117-32. doi: 10.1007/s11120-010-9546-8. Epub 2010 Apr 20.

The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles.

Author information

1
Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA. mattjohnson@whoi.edu

Abstract

Many non-photosynthetic species of protists and metazoans are capable of hosting viable algal endosymbionts or their organelles through adaptations of phagocytic pathways. A form of mixotrophy combining phototrophy and heterotrophy, acquired phototrophy (AcPh) encompasses a suite of endosymbiotic and organelle retention interactions, that range from facultative to obligate. AcPh is a common phenomenon in aquatic ecosystems, with endosymbiotic associations generally more prevalent in nutrient poor environments, and organelle retention typically associated with more productive ones. All AcPhs benefit from enhanced growth due to access to photosynthetic products; however, the degree of metabolic integration and dependency in the host varies widely. AcPh is found in at least four of the major eukaryotic supergroups, and is the driving force in the evolution of secondary and tertiary plastid acquisitions. Mutualistic resource partitioning characterizes most algal endosymbiotic interactions, while organelle retention is a form of predation, characterized by nutrient flow (i.e., growth) in one direction. AcPh involves adaptations to recognize specific prey or endosymbionts and to house organelles or endosymbionts within the endomembrane system but free from digestion. In many cases, hosts depend upon AcPh for the production of essential nutrients, many of which remain obscure. The practice of AcPh has led to multiple independent secondary and tertiary plastid acquisition events among several eukaryote lineages, giving rise to the diverse array of algae found in modern aquatic ecosystems. This article highlights those AcPhs that are model research organisms for both metazoans and protists. Much of the basic biology of AcPhs remains enigmatic, particularly (1) which essential nutrients or factors make certain forms of AcPh obligatory, (2) how hosts regulate and manipulate endosymbionts or sequestered organelles, and (3) what genomic imprint, if any, AcPh leaves on non-photosynthetic host species.

PMID:
20405214
DOI:
10.1007/s11120-010-9546-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center