Send to

Choose Destination
J Biol Chem. 2010 Jun 18;285(25):19460-71. doi: 10.1074/jbc.M110.113092. Epub 2010 Apr 19.

Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy.

Author information

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.


Overexpression of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), like exercise, increases mitochondrial content and inhibits muscle atrophy. To understand these actions, we tested whether PGC-1alpha or its close homolog, PGC-1beta, influences muscle protein turnover. In myotubes, overexpression of either coactivator increased protein content by decreasing overall protein degradation without altering protein synthesis rates. Elevated PGC-1alpha or PGC-1beta also prevented the acceleration of proteolysis induced by starvation or FoxO transcription factors and prevented the induction of autophagy and atrophy-specific ubiquitin ligases by a constitutively active FoxO3. In mouse muscles, overexpression of PGC-1beta (like PGC-1alpha) inhibited denervation atrophy, ubiquitin ligase induction, and transcription by NFkappaB. However, increasing muscle PGC-1alpha levels pharmacologically by treatment of mice with 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside failed to block loss of muscle mass or induction of ubiquitin ligases upon denervation atrophy, although it prevented loss of mitochondria. This capacity of PGC-1alpha and PGC-1beta to inhibit FoxO3 and NFkappaB actions and proteolysis helps explain how exercise prevents muscle atrophy.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center