Format

Send to

Choose Destination
J Biol Inorg Chem. 2010 Aug;15(6):957-65. doi: 10.1007/s00775-010-0657-7. Epub 2010 Apr 17.

Design and characterization of a chimeric ferritin with enhanced iron loading and transverse NMR relaxation rate.

Author information

1
Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.

Abstract

This paper describes the design and characterization of a novel ferritin chimera. The iron storage protein ferritin forms a paramagnetic ferrihydrite core. This biomineral, when placed in a magnetic field, can decrease the transverse NMR relaxation times (T (2) and T (2)*) of nearby mobile water protons. Ferritin nucleic acid constructs have recently been studied as "probeless" magnetic resonance imaging (MRI) reporters. Following reporter expression, ferritin sequesters endogenous iron and imparts hypointensity to T (2)- and T (2)*-weighted images in an amount proportional to the ferritin iron load. Wild-type ferritin consists of various ratios of heavy H and light L subunits, and their ratio affects ferritin's stability and iron storage capacity. We report a novel chimeric ferritin with a fixed subunit stoichiometry obtained by fusion of the L and the H subunits (L*H and H*L) using a flexible linker. We characterize these supramolecular ferritins expressed in human cells, including their iron loading characteristics, hydrodynamic size, subcellular localization, and effect on solvent water T (2) relaxation rate. Interestingly, we found that the L*H chimera exhibits a significantly enhanced iron loading ability and T (2) relaxation compared to wild-type ferritin. We suggest that the L*H chimera may be useful as a sensitive MRI reporter molecule.

PMID:
20401622
PMCID:
PMC2936821
DOI:
10.1007/s00775-010-0657-7
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center