Send to

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2010 Jun 18;584(12):2504-9. doi: 10.1016/j.febslet.2010.04.023. Epub 2010 Apr 14.

The mitochondrial permeability transition from yeast to mammals.

Author information

Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Padova, Italy.


Regulated permeability changes have been detected in mitochondria across species. We review here their key features, with the goal of assessing whether a "permeability transition" similar to that observed in higher eukaryotes is present in other species. The recent discoveries (i) that treatment with cyclosporin A (CsA) unmasks an inhibitory site for inorganic phosphate (Pi) [Basso, E., Petronilli, V., Forte, M.A. and Bernardi, P. (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 26307-26311], the classical inhibitor of the permeability transition of yeast and (ii) that under proper experimental conditions a matrix Ca(2+)-dependence can be demonstrated in yeast as well [Yamada, A., Yamamoto, T., Yoshimura, Y., Gouda, S., Kawashima, S., Yamazaki, N., Yamashita, K., Kataoka, M., Nagata, T., Terada, H., Pfeiffer, D.R. and Shinohara Y. (2009) Ca(2+)-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim. Biophys. Acta 1787, 1486-1491] suggest that the mitochondrial permeability transition has been conserved during evolution.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center