Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2010 May 15;44(10):3786-92. doi: 10.1021/es903550e.

Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction.

Author information

School of Civil and Environmental Engineering, and Department of Chemistry, Rice University, Houston, Texas 77005, USA.


Reactions of water-stable C(60) clusters (nC(60)) in water with OH radicals (*OH) and hydrated electrons (e(aq)(-)), generated by steady-state gamma-radiation, were observed and characterized. Ordered C(60) clusters were relatively recalcitrant to highly reactive *OH and e(aq)(-) species, with only a fraction of carbons oxidized and reduced, respectively. Pulse radiolysis suggested that the reactions of nC(60) with OH* and e(aq)(-) were diffusion limited, with rate constants of (7.34 +/- 0.31) x 10(9) M(-1) s(-1) and (2.34 +/- 0.02) x 10(10) M(-1) s(-1), respectively. Quantum mechanical calculations of binding energy of the C(60)-OH adduct as a function of C(60) clustering degree indicate, despite an initial fast reaction, a slower overall conversion due to thermodynamic instability of C(60)-OH intermediates. The results imply that ordered clustering of C(60) in the aqueous phase significantly hinders C(60)'s fundamental reactivity with radical species.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center