Send to

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2010 Jul;109(1):95-100. doi: 10.1152/japplphysiol.01187.2009. Epub 2010 Apr 15.

VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans.

Author information

Division of Geriatrics and Gerontology, Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.


Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringer's was administered by intradermal microdialysis at one forearm site while a control site received Ringer's solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center