Format

Send to

Choose Destination
J Am Chem Soc. 2010 May 12;132(18):6402-11. doi: 10.1021/ja1002845.

A three enzyme pathway for 2-amino-3-hydroxycyclopent-2-enone formation and incorporation in natural product biosynthesis.

Author information

1
Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

A number of natural products contain a 2-amino-3-hydroxycyclopent-2-enone five membered ring, termed C(5)N, which is condensed via an amide linkage to a variety of polyketide-derived polyenoic acid scaffolds. Bacterial genome mining indicates three tandem ORFs that may be involved in C(5)N formation and subsequent installation in amide linkages. We show that the protein products of three tandem ORFs (ORF33-35) from the ECO-02301 biosynthetic gene cluster in Streptomyces aizunenesis NRRL-B-11277, when purified from Escherichia coli, demonstrate the requisite enzyme activities for C(5)N formation and amide ligation. First, succinyl-CoA and glycine are condensed to generate 5-aminolevulinate (ALA) by a dedicated PLP-dependent ALA synthase (ORF34). Then ALA is converted to ALA-CoA through an ALA-AMP intermediate by an acyl-CoA ligase (ORF35). ALA-CoA is unstable and has a half-life of approximately 10 min under incubation conditions for off-pathway cyclization to 2,5-piperidinedione. The ALA synthase can compete with the nonenzymatic decomposition route and act in a novel second transformation, cyclizing ALA-CoA to C(5)N. C(5)N is then a substrate for the third enzyme, an ATP-dependent amide synthetase (ORF33). Using octatrienoic acid as a mimic of the C(56) polyenoic acid scaffold of ECO-02301, formation of the octatrienyl-C(5)N product was observed. This three enzyme pathway is likely the general route to the C(5)N ring system in other natural products, including the antibiotic moenomycin.

PMID:
20394362
PMCID:
PMC2866186
DOI:
10.1021/ja1002845
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center