Format

Send to

Choose Destination
J Environ Sci Health B. 2010 Jan;45(1):73-81. doi: 10.1080/03601230903404556.

Hydrolysis and photolysis of oxytetracycline in aqueous solution.

Author information

1
Chemistry Department, Delaware State University, Dover, Delaware 19901, USA.

Abstract

Oxytetracycline ((2Z,4S,4aR,5S,5aR,6S,12aS)-2-(amino-hydroxy-methylidene)-4-dimethylamino-5,6,10,11,12a-pentahydroxy-6-methyl-4,4a,5,5a-tetrahydrotetracene-1,3,12-trione) is a member of tetracycline antibiotics family and is widely administered to farm animals for the purpose of therapeutical treatment and health protection. Increasing attention has been paid to the environmental fate of oxytetracycline and other veterinary antibiotics with the occurrence of these antibiotics in the environment. The hydrolysis and photolysis degradation of oxytetracycline was investigated in this study. Oxytetracycline hydrolysis was found to obey the first-order model and similar rate constant values ranging from 0.094 +/- 0.001 to 0.106 +/- 0.003 day(-1) were obtained at different initial concentration ranging from 10 to 230 microM. Solution pH and temperature were shown to have remarked effects on oxytetracycline hydrolysis. The hydrolysis in pH neutral solution appeared to be much faster than in both acidic and alkaline solutions. Oxytetracycline half-life decreased from 1.2 x 10(2) to 0.15 day with the increasing temperature from 4 +/- 0.8 to 60 +/- 1 degrees C. The presence of Ca(2+) made oxytetracycline hydrolytic degradation kinetics deviate from the simple first-order model to the availability-adjusted first-order model and greatly slowed down the hydrolysis. Oxytetracycline photolysis was found to be very fast with a degradation rate constant at 3.61 +/- 0.06 day(-1), which is comparable to that of hydrolysis at 60 degrees C. The presence of Ca(2+) accelerated oxytetracycline photolysis, implying that oxytetracycline become more vulnerable to sunlight irradiation after chelating with Ca(2+). The photolysis may be the dominant degradation pathway of oxytetracycline in shallow transparent water environment.

PMID:
20390934
DOI:
10.1080/03601230903404556
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center