Send to

Choose Destination
Opt Express. 2010 Mar 1;18(5):5142-50. doi: 10.1364/OE.18.005142.

Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification.

Author information

Xlim, UMR 6172 CNRS - University of Limoges 123 Avenue A Thomas, 87060 Limoges, France.


It is now commonly accepted that, in large pitch hollow-core 'kagomé' lattice fibers, the loss spectrum is related to resonances of the thin silica webs in the photonic crystal cladding. Moreover, coherent scattering from successive holes' layers cannot be obtained and adding holes' layers does not decrease the loss level. In this communication, cross-comparison of experimental data and accurate numerical modeling is presented that helps demonstrate that waveguiding in large pitch hollow-core fibers arises from the antiresonance of the core surround only and does not originate from the photonic crystal cladding. The glass webs only mechanically support the core surround and are sources of extra leakage. Large pitch hollow-core fibers exhibit features of thin walled and thick walled tubular waveguides, the first one tailoring the transmission spectrum while the second one is responsible for the increased loss figure. As a consequence, an approximate calculus, based on specific features of both types of waveguides, gives the loss spectrum, in very good agreement with experimental data. Finally, a minimalist hollow-core microstructured fiber, the cladding of which consists of six thin bridges suspending the core surround, is proposed for the first time.


Supplemental Content

Full text links

Icon for Optical Society of America
Loading ...
Support Center