Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Med Genet. 2010 Jul-Aug;53(4):179-85. doi: 10.1016/j.ejmg.2010.04.001. Epub 2010 Apr 9.

Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440 Mb deletion in region 1q44 containing the HNRPU gene.

Author information

1
Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel, Christian-Albrechts University, Kiel, Germany.

Abstract

Structural genome aberrations are frequently associated with highly variable congenital phenotypes involving mental retardation and developmental delay. Although some of these aberrations may result in recognizable phenotypes, a high degree of phenotypic variability often complicates a comprehensive clinical and genetic diagnosis. We describe four patients with overlapping deletions in chromosomal region 1q44, who show developmental delay, in particular of expressive speech, seizures, hypotonia, CNS anomalies, including variable thickness of the abnormal corpus callosum in three of them. High resolution oligonucleotide and SNP array-based segmental aneuploidy profiling showed that these three patients share a 0.440 Mb interstitial deletion, which does not overlap with previously published consensus regions of 1q44 deletions. Two copies of AKT3 and ZNF238, two previously proposed dosage sensitive candidate genes for microcephaly and agenesis of the corpus callosum, were retained in two of our patients. The deletion shared by our patients encompassed the FAM36A, HNRPU, EFCAB2 and KIF26B genes. Since HNRPU is involved in the regulation of embryonic brain development, this represents a novel plausible candidate gene for the combination of developmental delay, speech delay, hypotonia, hypo- or agenesis of the corpus callosum, and seizures in patients with 1q44 deletions. Since only one of the two patients with deletions including the ZNF124 gene showed a vermis hypoplasia, mere hemizygosity for this gene is not sufficient to cause this anomaly. Moreover, to reconcile the variability in the corpus callosum thickness, additional mechanisms, such as unmasking of hemizygous mutations, position effects and possible interactions with other loci need consideration.

PMID:
20382278
DOI:
10.1016/j.ejmg.2010.04.001
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center