Send to

Choose Destination
Curr Top Med Chem. 2010;10(9):860-77.

Adenosine receptors: what we know and what we are learning.

Author information

Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, Pisa, Italy.


Adenosine, beside its role in the intermediate metabolism, mediates its physiological functions by interacting with four receptor subtypes named A(1), A(2A), A(2B) and A(3). All these receptors belong to the superfamily of G protein-coupled receptors that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body, they are involved in a variety of physiological processes and pathology including neurological, cardiovascular, inflammatory diseases and cancer. At now, it is ascertained that the biological responses evoked by the activation of a single receptor are the result of complex and integrated signalling pathways targeted by different receptor proteins, interacting each other. These pathways may in turn control receptor responsiveness over time through fine regulatory mechanisms including desensitization-internalization processes. The knowledge of adenosine receptor structure as well as the molecular mechanisms underlying the regulation of receptor functioning and of receptor-receptor interactions during physio and pathological conditions represent a pivotal starting point to the development of new drugs with high efficacy and selectivity for each adenosine receptor subtype. The goal of this review is to summarize what we now and what we are learning about adenosine receptor structure, signalling and regulatory mechanisms. In addition, to dissect the potential therapeutic application of adenosine receptor ligands, the pathophysiological role of the receptor subtypes in different tissues are discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Bentham Science Publishers Ltd.
Loading ...
Support Center