Send to

Choose Destination
Cell Res. 2010 Jun;20(6):665-75. doi: 10.1038/cr.2010.40. Epub 2010 Apr 6.

BNIP3 is essential for mediating 6-thioguanine- and 5-fluorouracil-induced autophagy following DNA mismatch repair processing.

Author information

Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.


DNA mismatch repair (MMR) processes the chemically induced mispairs following treatment with clinically important nucleoside analogs such as 6-thioguanine (6-TG) and 5-fluorouracil (5-FU). MMR processing of these drugs has been implicated in activation of a prolonged G2/M cell cycle arrest for repair and later induction of apoptosis and/or autophagy for irreparable DNA damage. In this study, we investigated the role of Bcl2 and adenovirus E1B Nineteen-kilodalton Interacting Protein (BNIP3) in the activation of autophagy, and the temporal relationship between a G2/M cell cycle arrest and the activation of BNIP3-mediated autophagy following MMR processing of 6-TG and 5-FU. We found that BNIP3 protein levels are upregulated in a MLH1 (MMR(+))-dependent manner following 6-TG and 5-FU treatment. Subsequent small-interfering RNA (siRNA)-mediated BNIP3 knockdown abrogates 6-TG-induced autophagy. We also found that p53 knockdown or inhibition of mTOR activity by rapamycin cotreatment impairs 6-TG- and 5-FU-induced upregulation of BNIP3 protein levels and autophagy. Furthermore, suppression of Checkpoint kinase 1 (Chk1) expression with a subsequent reduction in 6-TG-induced G2/M cell cycle arrest by Chk1 siRNA promotes the extent of 6-TG-induced autophagy. These findings suggest that BNIP3 mediates 6-TG- and 5-FU-induced autophagy in a p53- and mTOR-dependent manner. Additionally, the duration of Chk1-activated G2/M cell cycle arrest determines the level of autophagy following MMR processing of these nucleoside analogs.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center