Universal thermoelectric effect of Dirac fermions in graphene

Phys Rev Lett. 2010 Feb 19;104(7):076804. doi: 10.1103/PhysRevLett.104.076804. Epub 2010 Feb 19.

Abstract

We numerically study the thermoelectric transports of Dirac fermions in graphene in the presence of a strong magnetic field and disorder. We find that the thermoelectric transport coefficients demonstrate universal behavior depending on the ratio between the temperature and the width of the disorder-broadened Landau levels (LLs). The transverse thermoelectric conductivity alpha{xy} reaches a universal quantum value at the center of each LL in the high temperature regime, and it has a linear temperature dependence at low temperatures. The calculated Nernst signal has a peak at the central LL with heights of the order of k{B}/e, and changes sign near other LLs, while the thermopower has an opposite behavior, in good agreement with experimental data. The validity of the generalized Mott relation between the thermoelectric and electrical transport coefficients is verified in a wide range of temperatures.