Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Lett. 2010 Aug 28;294(2):139-46. doi: 10.1016/j.canlet.2010.03.004. Epub 2010 Apr 2.

Molecular mechanisms underlying tumor dormancy.

Author information

1
Center of Cancer Systems Biology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, United States. nava.almog@tufts.edu

Abstract

Evidence suggests that dormant, microscopic tumors are not only common, but are highly prevalent in otherwise healthy individuals. Due to their small size and non-invasive nature, these dormant tumors remain asymptomatic and, in most cases, undetected. With advances in diagnostic imaging and molecular biology, it is now becoming clear that such neoplasms can remain in an asymptomatic, dormant stage for considerable periods of time without expanding in size. Although a number of processes may play a role in thwarting the expansion of microscopic tumors, one critical mechanism behind tumor dormancy is the ability of the tumor population to induce angiogenesis. Although cancer can arise through multiple pathways, it is assumed that essentially most tumors begin as microscopic, non-angiogenic neoplasms which cannot expand in size until vasculature is established. It is now becoming clear that cancer does not progress through a continuous exponential growth and mass expansion. Clinical cancer is usually manifested only in late, unavoidably symptomatic stages of the disease when tumors are sufficiently large to be readily detected. While dormancy in primary tumors is best defined as the time between the carcinogenic transformation event and the onset of inexorable progressive growth, it can also occur as minimal residual or occult disease from treated tumors or as micro-metastases. The existence of dormant tumors has important implications for the early detection and treatment of cancer. Elucidating the regulatory machinery of these processes will be instrumental in identifying novel early cancer biomarkers and could provide a rationale for the development of dormancy-promoting tumor therapies. Despite the high prevalence of microscopic, dormant tumors in humans and the significant clinical implications of their early detection, this area in cancer research has, to date, been under-investigated. In this mini review observations, models and experimental approaches to study tumor dormancy are summarized. Additionally, analogies and distinctions between the concepts of "tumor dormancy" and that of the "cellular dormancy" of tumor cells, as well as between the "exit from tumor dormancy" and the "onset of the angiogenic switch" are discussed.

PMID:
20363069
DOI:
10.1016/j.canlet.2010.03.004
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center