Format

Send to

Choose Destination
See comment in PubMed Commons below
J Vis Exp. 2010 Mar 31;(37). pii: 1874. doi: 10.3791/1874.

Application of stopped-flow kinetics methods to investigate the mechanism of action of a DNA repair protein.

Author information

1
Molecular Biology and Biochemistry Department, Wesleyan University.

Abstract

Transient kinetic analysis is indispensable for understanding the workings of biological macromolecules, since this approach yields mechanistic information including active site concentrations and intrinsic rate constants that govern macromolecular function. In case of enzymes, for example, transient or pre-steady state measurements identify and characterize individual events in the reaction pathway, whereas steady state measurements only yield overall catalytic efficiency and specificity. Individual events such as protein-protein or protein-ligand interactions and rate-limiting conformational changes often occur in the millisecond timescale, and can be measured directly by stopped-flow and chemical-quench flow methods. Given an optical signal such as fluorescence, stopped-flow serves as a powerful and accessible tool for monitoring reaction progress from substrate binding to product release and catalytic turnover(1,2). Here, we report application of stopped-flow kinetics to probe the mechanism of action of Msh2-Msh6, a eukaryotic DNA repair protein that recognizes base-pair mismatches and insertion/deletion loops in DNA and signals mismatch repair (MMR)(3-5). In doing so, Msh2-Msh6 increases the accuracy of DNA replication by three orders of magnitude (error frequency decreases from approximately 10(-6) to 10(-9) bases), and thus helps preserve genomic integrity. Not surprisingly, defective human Msh2-Msh6 function is associated with hereditary non-polyposis colon cancer and other sporadic cancers(6-8). In order to understand the mechanism of action of this critical DNA metabolic protein, we are probing the dynamics of Msh2-Msh6 interaction with mismatched DNA as well as the ATPase activity that fuels its actions in MMR. DNA binding is measured by rapidly mixing Msh2-Msh6 with DNA containing a 2-aminopurine (2-Ap) fluorophore adjacent to a G:T mismatch and monitoring the resulting increase in 2-aminopurine fluorescence in real time. DNA dissociation is measured by mixing pre-formed Msh2-Msh6 G:T(2-Ap) mismatch complex with unlabeled trap DNA and monitoring decrease in fluorescence over time(9). Pre-steady state ATPase kinetics are measured by the change in fluorescence of 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin)-labeled Phosphate Binding Protein (MDCC-PBP) on binding phosphate (Pi) released by Msh2-Msh6 following ATP hydrolysis(9,10). The data reveal rapid binding of Msh2-Msh6 to a G:T mismatch and formation of a long-lived Msh2-Msh6 G:T complex, which in turn results in suppression of ATP hydrolysis and stabilization of the protein in an ATP-bound form. The reaction kinetics provide clear support for the hypothesis that ATP-bound Msh2-Msh6 signals DNA repair on binding a mismatched base pair in the double helix. F

PMID:
20357752
PMCID:
PMC3168206
DOI:
10.3791/1874
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for MyJove Corporation Icon for PubMed Central
    Loading ...
    Support Center