Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2010 Apr 28;132(16):5693-703. doi: 10.1021/ja907756e.

Protein fluctuations as the possible origin of the thermal activation of rod photoreceptors in the dark.

Author information

Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.


Efficient retinal photoisomerization, signal transduction, and amplification contribute to single-photon electrical responses in vertebrates visual cells. However, spontaneous discrete electrical signals arising in the dark, with identical intensity and time profiles as those generated by genuine single photons (dark events), limit the potential capability of the rod visual system to discern single photons from thermal noise. It is accepted that the light and the thermal activation of the rod photoreceptor rhodopsin (Rho) triggers the light and the dark events, respectively. However the activation barrier for the dark events (80-110 kJ/mol) appears to be only half of the barrier for light-dependent activation of Rho (> or =180 kJ/mol). On the basis of these observations, it has been postulated that both processes should follow different pathways, but the molecular mechanism for the thermal activation process still remains an open question and subject of debate. Here, performing infrared difference spectroscopy measurements, we found that the -OH group of Thr118 from bovine Rho exhibits a slow but measurable hydrogen/deuterium exchange (HDX) under native conditions. Given the location of Thr118 in the X-ray structures, isolated from the aqueous phase and in steric contact with the buried retinal chromophore, we assume that a protein structural fluctuation must drive the retinal binding pocket (RBP) transiently open. We characterized the kinetics (rate and activation enthalpy) and thermodynamics (equilibrium constant and enthalpy) of this fluctuation from the global analysis of the HDX of Thr118-OH as a function of the temperature and pH. In parallel, using HPLC chromatography, we determined the kinetics of the thermal isomerization of the protonated 11-cis retinal in solution, as a model for retinal thermal isomerization in an open RBP. Finally, we propose a quantitative two-step model in which the dark activation of Rho is triggered by thermal isomerization of the retinal in a transiently opened RBP, which accurately reproduced both the experimental activation barrier and the rate of the dark events. We conclude that the absolute sensitivity threshold of our visual system is limited by structural fluctuations of the chromophore binding pocket rather than in the chromophore itself.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center