Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Nano. 2010 Apr 27;4(4):2077-87. doi: 10.1021/nn901676x.

Microfluidic mixing and the formation of nanoscale lipid vesicles.

Author information

1
National Institute of Standards and Technology, Semiconductor Electronics Division, Gaithersburg, Maryland 20899, USA. andreas.jahn@org.chem.ethz.ch

Abstract

We investigate the formation of unilamellar lipid vesicles (liposomes) with diameters of tens of nanometers by controlled microfluidic mixing and nanoparticle determination (COMMAND). Our study includes liposome synthesis experiments and numerical modeling of our microfluidic implementation of the batch solvent injection method. We consider microfluidic liposome formation from the perspective of fluid interfaces and convective-diffusive mixing, as we find that bulk fluid flow parameters including hydrodynamically focused alcohol stream width, final alcohol concentration, and shear stress do not primarily determine the vesicle formation process. Microfluidic device geometry in conjunction with hydrodynamic flow focusing strongly influences vesicle size distributions, providing a coarse method to control liposome size, while total flow rate allows fine-tuning the vesicle size in certain focusing regimes. Although microfluidic liposome synthesis is relatively simple to implement experimentally, numerical simulations of the mixing process reveal a complex system of fluid flow and mass transfer determining the formation of nonequilibrium vesicles. These results expand our understanding of the microfluidic environment that controls liposome self-assembly and yield several technological advances for the on-chip synthesis of nanoscale lipid vesicles.

PMID:
20356060
DOI:
10.1021/nn901676x
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center