Send to

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2009 Jul;1(7):1474-81. doi: 10.1021/am9001293.

Near-infrared phosphorescent polymeric nanomicelles: efficient optical probes for tumor imaging and detection.

Author information

Institute for Lasers, Photonics and Biophotonics, SUNY at Buffalo, Buffalo, New York 14226, USA.


We report a formulation of near-infrared (near-IR) phosphorescent polymeric nanomicelles and their use for in vivo high-contrast optical imaging, targeting, and detection of tumors in small animals. Near-IR phosphorescent molecules of Pt(II)-tetraphenyltetranaphthoporphyrin (Pt(TPNP)) were found to maintain their near-IR phosphorescence properties when encapsulated into phospholipid nanomicelles. The prepared phosphorescent micelles are of approximately 100 nm size and are highly stable in aqueous suspensions. A large spectral separation between the Pt(TPNP) absorption, with a peak at approximately 700 nm, and its phosphorescence emission, with a peak at approximately 900 nm, allows a dramatic decrease in the level of background autofluorescence and scattered excitation light in the near-IR spectral range, where the signal from the phosphorescent probe is observed. In vivo animal imaging with subcutaneously xenografted tumor-bearing mice has resulted in high contrast optical images, indicating highly specific accumulation of the phosphorescent micelles into tumors. Using optical imaging with near-IR phosphorescent nanomicelles, detection of smaller, visually undetectable tumors has also been demonstrated.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center