Format

Send to

Choose Destination
See comment in PubMed Commons below
ACS Appl Mater Interfaces. 2009 Jun;1(6):1250-8. doi: 10.1021/am900135g.

Interfacial self-assembly of metal-mediated viologen-like coordination polyelectrolyte hybrids of the bisterpyridine ligand and their optical, electrochemical, and electrochromic properties.

Author information

1
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.

Abstract

Metal-mediated coordination polyelectrolyte multilayers with a bisterpyridine ligand (Bisterpy) have been self-assembled at air-water interfaces via coordination reactions of the bidentate ligand Bisterpy with inorganic salts in the subphases. To avoid dissolution of the viologen-like coordination polyelectrolyte monolayers, anionic poly(styrenesulfonic acid-o-maleic) (PSS) acid was added in the subphases as a supporting layer. The average molecular area of the ligand Bisterpy could reach 1.2-1.5 nm(2) on the surfaces of the subphases containing mixtures of inorganic salts (M) and PSS, although the ligand was unable to form a stable monolayer on the pure water surface. The Langmuir-Blodgett (LB) method was used to deposit the Bisterpy/PSS and M-Bisterpy/PSS hybrid multilayers on the substrate surfaces, which were characterized by using absorption and fluorescence spectroscopy as well as electrochemical analysis. Quasi-reversible redox waves were recorded and centered at about -0.68 and -0.92 V (vs Ag/AgCl), respectively, corresponding to the two-electron process of the ligand, Bisterpy2+ <--> Bisterpy(*+) <--> Bisterpy(0), which were slightly shifted to lower potentials in the LB films of metal-mediated coordination polymers. The film compositions were determined by using X-ray photoelectron spectroscopy. The as-prepared LB films showed strong stability and good electrochromic response upon the applied potential of -1.1 V vs Ag/AgCl and thus could act as potential materials in the development of redox-based molecular switches and display devices.

PMID:
20355920
DOI:
10.1021/am900135g
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center