Format

Send to

Choose Destination
PLoS One. 2010 Mar 24;5(3):e9850. doi: 10.1371/journal.pone.0009850.

The MinCDJ system in Bacillus subtilis prevents minicell formation by promoting divisome disassembly.

Author information

1
Institute for Biochemistry, University of Cologne, Cologne, Germany.

Abstract

BACKGROUND:

Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete cytokinetic ring at the poles. Recently, a new component of the B. subtilis Min system was identified, MinJ, which acts as a bridge between DivIVA and MinCD.

METHODOLOGY/PRINCIPAL FINDINGS:

We used fluorescence microscopy and molecular genetics to examine the molecular role of MinJ. We found that in the absence of a functional Min system, FtsA, FtsL and PBP-2B remain associated with completed division sites. Evidence is provided that MinCDJ are responsible for the failure of these proteins to localize properly, indicating that MinCDJ can act on membrane integral components of the divisome.

CONCLUSIONS/SIGNIFICANCE:

Taken together, we postulate that the main function of the Min system is to prevent minicell formation adjacent to recently completed division sites by promoting the disassembly of the cytokinetic ring, thereby ensuring that cell division occurs only once per cell cycle. Thus, the role of the Min system in rod-shaped bacteria seems not to be restricted to an inhibitory function on FtsZ polymerization, but can act on different levels of the divisome.

PMID:
20352045
PMCID:
PMC2844427
DOI:
10.1371/journal.pone.0009850
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center