Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Biochem. 2010;79:683-706. doi: 10.1146/annurev-biochem-060408-093701.

Somatic mitochondrial DNA mutations in mammalian aging.

Author information

1
Max Planck Institute for Biology of Ageing, Cologne D-50931, Germany. larsson@age.mpg.de

Abstract

Mitochondrial dysfunction is heavily implicated in the multifactorial aging process. Aging humans have increased levels of somatic mtDNA mutations that tend to undergo clonal expansion to cause mosaic respiratory chain deficiency in various tissues, such as heart, brain, skeletal muscle, and gut. Genetic mouse models have shown that somatic mtDNA mutations and cell type-specific respiratory chain dysfunction can cause a variety of phenotypes associated with aging and age-related disease. There is thus strong observational and experimental evidence to implicate somatic mtDNA mutations and mosaic respiratory chain dysfunction in the mammalian aging process. The hypothesis that somatic mtDNA mutations are generated by oxidative damage has not been conclusively proven. Emerging data instead suggest that the inherent error rate of mitochondrial DNA (mtDNA) polymerase gamma (Pol gamma) may be responsible for the majority of somatic mtDNA mutations. The roles for mtDNA damage and replication errors in aging need to be further experimentally addressed.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center