Format

Send to

Choose Destination
See comment in PubMed Commons below
Arch Pharm (Weinheim). 2010 Apr;343(4):193-206. doi: 10.1002/ardp.201000028.

Proteus in the world of proteins: conformational changes in protein kinases.

Author information

1
Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany.

Abstract

The 512 protein kinases encoded by the human genome are a prime example of nature's ability to create diversity by introducing variations to a highly conserved theme. The activity of each kinase domain is controlled by layers of regulatory mechanisms involving different combinations of post-translational modifications, intramolecular contacts, and intermolecular interactions. Ultimately, they all achieve their effect by favoring particular conformations that promote or prevent the kinase domain from catalyzing protein phosphorylation. The central role of kinases in various diseases has encouraged extensive investigations of their biological function and three-dimensional structures, yielding a more detailed understanding of the mechanisms that regulate protein kinase activity by conformational changes. In the present review, we discuss these regulatory mechanisms and show how conformational changes can be exploited for the design of specific inhibitors that lock protein kinases in inactive conformations. In addition, we highlight recent developments to monitor ligand-induced structural changes in protein kinases and for screening and identifying inhibitors that stabilize enzymatically incompetent kinase conformations.

PMID:
20336692
DOI:
10.1002/ardp.201000028
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center