Format

Send to

Choose Destination
See comment in PubMed Commons below
BMC Cancer. 2010 Mar 24;10:110. doi: 10.1186/1471-2407-10-110.

Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways.

Author information

1
Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA.

Abstract

BACKGROUND:

Circadian genes continue to gain attention as important transcriptional regulators with the potential to influence a variety of biological pathways, including many cancer-related processes. The core circadian gene cryptochrome 2 (CRY2) is essential for proper circadian timing, and is a key component of the negative arm of the circadian feedback loop. As such, aberrant expression of CRY2 may influence carcinogenic processes and thereby impact cancer susceptibility.

METHODS:

We silenced CRY2 in breast cancer cell lines (MCF-7) using small-interfering oligos (siRNA) and measured the impact of CRY2 knockdown on a number of cancer-relevant parameters. Cell cycle distribution, cell viability, and apoptotic response were measured in CRY2 knockdown (CRY2-) and normal (CRY2+) cell populations using flow cytometry in cells with and without exposure to a mutagen challenge. DNA damage accumulation was measured using the single cell gel electrophoresis (comet) assay, and damage was quantified using the Olive tail moment, which considers the amount and distance of DNA migration away from the nucleus, indicative of DNA strand breaks. Expression changes in cancer-relevant transcripts were measured by whole genome microarray. The Student's t-test was used for statistical comparisons, and P-values obtained from the microarray were adjusted for multiple comparisons using the false discovery rate correction, in order to obtain an adjusted Q-value for each observation.

RESULTS:

The comet assay results indicated that upon exposure to the same dose of chemical mutagen, CRY2- cells accumulate significantly more unrepaired DNA damage than CRY2+ cells (P = 0.040), suggesting that CRY2 may be important for DNA repair. In addition, a number of transcripts with relevance for DNA damage repair displayed altered expression following CRY2 silencing. These included BCCIP (Q = 0.002), BCL2 (Q = 0.049), CCND1 (Q = 0.009), CDKN1A (Q < 0.001), GADD45A (Q = 0.002), HERC5 (Q < 0.001), MCM5 (Q = 0.042), PPP1R15A (Q < 0.001), SUMO1 (Q < 0.001), and UBA1 (Q = 0.023). However, no significant influence of CRY2 knockdown on cell cycle distributions, cell cycle checkpoints in response to mutagen challenge, or apoptotic response was detected.

CONCLUSIONS:

In total, these data suggest a limited, but potentially important role for CRY2 in the regulation of DNA damage repair and the maintenance of genomic stability. Future investigations may focus on identifying the mechanisms by which CRY2 may regulate the expression of transcripts with known relevance for carcinogenesis.

PMID:
20334671
PMCID:
PMC2860360
DOI:
10.1186/1471-2407-10-110
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center