Format

Send to

Choose Destination
Annu Rev Biochem. 2010;79:737-75. doi: 10.1146/annurev.biochem.052208.114057.

Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions.

Author information

1
Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique and Université Paris-7 Denis Diderot, Institut de Biologie Physico-Chimique, F-75005 Paris, France. jean-luc.popot@ibpc.fr

Abstract

Membrane proteins (MPs) are usually handled in aqueous solutions as protein/detergent complexes. Detergents, however, tend to be inactivating. This situation has prompted the design of alternative surfactants that can be substituted for detergents once target proteins have been extracted from biological membranes and that keep them soluble in aqueous buffers while stabilizing them. The present review focuses on three such systems: Amphipols (APols) are amphipathic polymers that adsorb onto the hydrophobic transmembrane surface of MPs; nanodiscs (NDs) are small patches of lipid bilayer whose rim is stabilized by amphipathic proteins; fluorinated surfactants (FSs) resemble detergents but interfere less than detergents do with stabilizing protein/protein and protein/lipid interactions. The structure and properties of each of these three systems are described, as well as those of the complexes they form with MPs. Their respective usefulness, constraints, and prospects for functional and structural studies of MPs are discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center