Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Microbiol Biotechnol. 2010 May;86(5):1267-79. doi: 10.1007/s00253-010-2521-7. Epub 2010 Mar 20.

Applications of quorum sensing in biotechnology.

Author information

1
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Laboratory, St. Paul, MN 55108, USA.

Abstract

Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell-cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.

PMID:
20306190
DOI:
10.1007/s00253-010-2521-7
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center