Send to

Choose Destination
See comment in PubMed Commons below

Diamond-Blackfan Anemia.


Clinton C1, Gazda HT2,3.


GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017.
2009 Jun 25 [updated 2016 Apr 7].

Author information

Research Genetic Counselor, Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital
Assistant Professor of Pediatrics, Harvard Medical School, Boston, Massachusetts



Diamond-Blackfan anemia (DBA) in its classic form is characterized by a profound normochromic and usually macrocytic anemia with normal leukocytes and platelets, congenital malformations in up to 50% of affected individuals, and growth retardation in 30% of affected individuals. The hematologic complications occur in 90% of affected individuals during the first year of life. The phenotypic spectrum ranges from a mild form (e.g., mild anemia, no anemia with only subtle erythroid abnormalities, physical malformations without anemia) to a severe form of fetal anemia resulting in nonimmune hydrops fetalis. DBA is associated with an increased risk for acute myelogenous leukemia (AML), myelodysplastic syndrome (MDS), and solid tumors including osteogenic sarcoma.


The diagnosis is established in a proband when all four of the following diagnostic criteria are present: Age younger than one year. Macrocytic anemia with no other significant cytopenias. Reticulocytopenia. Normal marrow cellularity with a paucity of erythroid precursors. Other causes of bone marrow failure (e.g., Fanconi anemia, Pearson syndrome, dyskeratosis congenita, human immunodeficiency virus infection) need to be considered and ruled out as appropriate. DBA has been associated with pathogenic variants in sixteen genes that encode ribosomal proteins and in GATA1 and TSR2. A pathogenic variant in one of these eighteen genes is identified in approximately 65% of individuals with DBA.


Treatment of manifestations: Corticosteroid treatment, recommended in children older than age twelve months, initially improves the red blood cell count in approximately 80% of affected individuals. Chronic transfusion with packed red blood cells is initially necessary while the diagnosis is made and in those not responsive to corticosteroids. Hematopoietic stem cell transplantation (HSCT), the only curative therapy for the hematologic manifestations of DBA, is often recommended for those who are transfusion dependent or develop other cytopenias. Treatment of malignancies should be coordinated by an oncologist. Chemotherapy must be given cautiously as it may lead to prolonged cytopenia and subsequent toxicities. Prevention of secondary complications: Transfusion-related iron overload is the most common complication in transfusion-dependent individuals. Iron chelation therapy with deferasirox orally or desferrioxamine subcutaneously is recommended after ten to 12 transfusions. Corticosteroid-related side effects must also be closely monitored, especially as related to risk for infection, growth retardation, and loss of bone density in growing children. Often individuals will be placed on transfusion therapy if these side effects are intolerable. Surveillance: Complete blood counts several times a year; bone marrow aspirate/biopsy periodically to evaluate morphology and cellularity in the event of another cytopenia or a change in response to treatment. In steroid-dependent individuals: monitor blood pressure and (in children) growth. Agents/circumstances to avoid: Deferiprone for the treatment of iron overload, which has led to severe neutropenia in a few individuals with DBA; infection (especially those on corticosteroids). Evaluation of relatives at risk: Molecular genetic testing of at-risk relatives of a proband with a known pathogenic variant allows for early diagnosis and appropriate monitoring for bone marrow failure, physical abnormalities, and related cancers.


DBA is most often inherited in an autosomal dominant manner; GATA1-related and TSR2-related DBA are inherited in an X-linked manner. Approximately 40% to 45% of individuals with autosomal dominant DBA have inherited the pathogenic variant from a parent; approximately 55% to 60% have a de novo pathogenic variant. Each child of an individual with autosomal dominant DBA has a 50% chance of inheriting the pathogenic variant. Males with GATA1 or TSR2-related DBA pass the pathogenic variant to all of their daughters and none of their sons. Women heterozygous for a GATA1 or TSR2 pathogenic variant have a 50% chance of transmitting the pathogenic variant in each pregnancy: males who inherit the pathogenic variant will be affected; females who inherit the pathogenic variant will be carriers and will usually not be affected. Carrier testing of at-risk female relatives is possible if the GATA1 or TSR2 pathogenic variant has been identified in the family. Prenatal testing for pregnancies at increased risk is possible if the familial pathogenic variant has been identified.

Copyright © 1993-2017, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Support Center