Format

Send to

Choose Destination
See comment in PubMed Commons below

Spatiotemporal dynamics of Ca2+ signaling and its physiological roles.

Author information

1
Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. iino@m.u-tokyo.ac.jp

Abstract

Changes in the intracellular Ca(2+) concentration regulate numerous cell functions and display diverse spatiotemporal dynamics, which underlie the versatility of Ca(2+) in cell signaling. In many cell types, an increase in the intracellular Ca(2+) concentration starts locally, propagates within the cell (Ca(2+) wave) and makes oscillatory changes (Ca(2+) oscillation). Studies of the intracellular Ca(2+) release mechanism from the endoplasmic reticulum (ER) showed that the Ca(2+) release mechanism has inherent regenerative properties, which is essential for the generation of Ca(2+) waves and oscillations. Ca(2+) may shuttle between the ER and mitochondria, and this appears to be important for pacemaking of Ca(2+) oscillations. Importantly, Ca(2+) oscillations are an efficient mechanism in regulating cell functions, having effects supra-proportional to the sum of duration of Ca(2+) increase. Furthermore, Ca(2+) signaling mechanism studies have led to the development of a method for specific inhibition of Ca(2+) signaling, which has been used to identify hitherto unrecognized functions of Ca(2+) signals.

PMID:
20228624
PMCID:
PMC3417849
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic Icon for PubMed Central
    Loading ...
    Support Center