Send to

Choose Destination
J Neurosci. 2010 Mar 10;30(10):3579-88. doi: 10.1523/JNEUROSCI.6319-09.2010.

Synaptic localization and function of Sidekick recognition molecules require MAGI scaffolding proteins.

Author information

Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.


Four transmembrane adhesion molecules-Sidekick-1, Sidekick-2, Down's syndrome cell adhesion molecule (Dscam), and Dscam-like-are determinants of lamina-specific synapse formation in the vertebrate retina. Their C termini are predicted to bind postsynaptic density (PSD)-95/Discs Large/ZO-1 (PDZ) domains, which are present in many synaptic scaffolding proteins. We identify members of the membrane-associated guanylate kinase with inverted orientation (MAGI) and PSD-95 subfamilies of multi-PDZ domain proteins as binding partners for Sidekicks and Dscams. Specific MAGI and PSD-95 family members are present in distinct subsets of retinal synapses, as are Sidekicks and Dscams. Using Sidekick-2 as an exemplar, we show that its PDZ-binding C terminus is required for both its synaptic localization in photoreceptors and its ability to promote lamina-specific arborization of presynaptic and postsynaptic processes in the inner plexiform layer. In photoreceptor synapses that contain both MAGI-1 and PSD-95, Sidekick-2 preferentially associates with MAGI-1. Depletion of MAGI-1 from photoreceptors by RNA interference blocks synaptic localization of Sidekick-2 in photoreceptors without affecting localization of PSD-95. Likewise, depletion of MAGI-2 from retinal ganglion cells and interneurons interferes with Sidekick-2-dependent laminar targeting of processes. These results demonstrate that localization and function of Sidekick-2 require its incorporation into a MAGI-containing synaptic scaffold.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center