Format

Send to

Choose Destination
Diabetes. 2010 Jun;59(6):1330-7. doi: 10.2337/db09-1253. Epub 2010 Mar 9.

Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes.

Author information

1
University of Cincinnati, Department of Internal Medicine, Cincinnati, Ohio, USA. salehim@uc.edu

Abstract

OBJECTIVE:

The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) account for up to 60% of postprandial insulin release in healthy people. Previous studies showed a reduced incretin effect in patients with type 2 diabetes but a robust response to exogenous GLP-1. The primary goal of this study was to determine whether endogenous GLP-1 regulates insulin secretion in type 2 diabetes.

METHODS:

Twelve patients with well-controlled type 2 diabetes and eight matched nondiabetic subjects consumed a breakfast meal containing D-xylose during fixed hyperglycemia at 5 mmol/l above fasting levels. Studies were repeated, once with infusion of the GLP-1 receptor antagonist, exendin-(9-39) (Ex-9), and once with saline.

RESULTS:

The relative increase in insulin secretion after meal ingestion was comparable in diabetic and nondiabetic groups (44 +/- 4% vs. 47 +/- 7%). Blocking the action of GLP-1 suppressed postprandial insulin secretion similarly in the diabetic and nondiabetic subjects (25 +/- 4% vs. 27 +/- 8%). However, Ex-9 also reduced the insulin response to intravenous glucose (25 +/- 5% vs. 26 +/- 7%; diabetic vs. nondiabetic subjects), when plasma GLP-1 levels were undetectable. The appearance of postprandial ingested d-xylose in the blood was not affected by Ex-9.

CONCLUSIONS:

These findings indicate that in patients with well-controlled diabetes, the relative effects of enteral stimuli and endogenous GLP-1 to enhance insulin release are retained and comparable with those in nondiabetic subjects. Surprisingly, GLP-1 receptor signaling promotes glucose-stimulated insulin secretion independent of the mode of glucose entry. Based on rates of D-xylose absorption, GLP-1 receptor blockade did not affect gastric emptying of a solid meal.

PMID:
20215429
PMCID:
PMC2874693
DOI:
10.2337/db09-1253
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center