Format

Send to

Choose Destination
Cell Mol Life Sci. 2010 Jul;67(14):2405-24. doi: 10.1007/s00018-010-0311-0. Epub 2010 Mar 7.

Gene expression, metabolic regulation and stress tolerance during diapause.

Author information

1
Department of Biology, Dalhousie University, Halifax, NS, Canada. tmacrae@dal.ca

Abstract

Diapause entails molecular, physiological and morphological remodeling of living animals, culminating in a dormant state characterized by enhanced stress tolerance. Molecular mechanisms driving diapause resemble those responsible for biochemical processes in proliferating cells and include transcriptional, post-transcriptional and post-translational processes. The results are directed gene expression, differential mRNA and protein accumulation and protein modifications, including those that occur in response to changes in cellular redox potential. Biochemical pathways switch, metabolic products change and energy production is adjusted. Changes to biosynthetic activities result for example in the synthesis of molecular chaperones, late embryogenesis abundant (LEA) proteins and protective coverings, all contributing to stress tolerance. The purpose of this review is to consider regulatory and mechanistic strategies that are potentially key to metabolic control and stress tolerance during diapause, while remembering that organisms undergoing diapause are as diverse as the processes itself. Some of the parameters described have well-established roles in diapause, whereas the evidence for others is cursory.

PMID:
20213274
DOI:
10.1007/s00018-010-0311-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center