Send to

Choose Destination
See comment in PubMed Commons below
Br J Nutr. 2010 Apr;103(7):964-76. doi: 10.1017/S0007114509992212. Epub 2010 Mar 3.

The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs.

Author information

Department für Tierwissenschaften, Lehrstuhl für Tierernährung, Technische Universität München, Hochfeldweg 6, Freising D-85350, Germany.


The impact of excess dietary leucine (Leu) was studied in two growth assays with pigs (8-25 kg). In each trial, forty-eight pigs were allotted to one of six dietary groups. The dietary Leu supply increased from treatment L100 to L200 (three increments). To guarantee that interactions between the branched-chain amino acids (BCAA) were not cushioned either surpluses of isoleucine (Ile, expt 1) or valine (Val; expt 2) were avoided. In the fifth treatment, the effects of a simultaneous excess of Leu and Val (expt 1), or of Leu and Ile (expt 2) were investigated. The sixth treatment was a positive control. An increase in dietary Leu decreased growth performance, and increased plasma Leu and serum alpha-keto-isocaproate levels in a linear, dose-dependent manner. Levels of plasma Ile and Val, and of serum alpha-keto-beta-methylvalerate and alpha-keto-isovalerate, indicated increased catabolism. Linear increases in the activity of basal branched-chain alpha-keto acid dehydrogenase in the liver confirmed these findings. No major alterations occurred in the mRNA of branched-chain amino acid catabolism genes. In liver tissue from expt 2, however, the mRNA levels of growth hormone receptor, insulin-like growth factor acid labile subunit and insulin-like growth factor 1 decreased significantly with increasing dietary Leu. In conclusion, excess dietary Leu increased the catabolism of BCAA mainly through posttranscriptional mechanisms. The impact of excess Leu on the growth hormone--insulin-like growth factor-1 axis requires further investigation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Cambridge University Press
    Loading ...
    Support Center