Send to

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2010 Apr 14;10(4):1125-31. doi: 10.1021/nl9032318.

Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials.

Author information

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.


We demonstrate the fabrication of nanoperforated graphene materials with sub-20-nm features using cylinder-forming diblock copolymer templates across >1 mm(2) areas. Hexagonal arrays of holes are etched into graphene membranes, and the remaining constrictions between holes interconnect forming a honeycomb structure. Quantum confinement, disorder, and localization effects modulate the electronic structure, opening an effective energy gap of 100 meV in the nanopatterned material. The field-effect conductivity can be modulated by 40x (200x) at room temperature (T = 105 K) as a result. A room temperature hole mobility of 1 cm(2) V(-1) s(-1) was measured in the fabricated nanoperforated graphene field effect transistors. This scalable strategy for modulating the electronic structure of graphene is expected to facilitate applications of graphene in electronics, optoelectronics, and sensing.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center