Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 2010 Mar;63(3):582-91. doi: 10.1002/mrm.22264.

Investigation of tumor hyperpolarized [1-13C]-pyruvate dynamics using time-resolved multiband RF excitation echo-planar MRSI.

Author information

  • 1Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94158, USA.


Hyperpolarized [1-(13)C]-pyruvate is an exciting new agent for the in vivo study of cellular metabolism and a potential cancer biomarker. The nature of the hyperpolarized signal poses unique challenges because of its short duration and the loss of magnetization with every excitation. In this study, we applied a novel and efficient time-resolved MR spectroscopic imaging (MRSI) method to investigate in a prostate cancer model the localized temporal dynamics of the uptake of [1-(13)C]-pyruvate and its conversion to metabolic products, specifically [1-(13)C]-lactate. This hyperpolarized (13)C method used multiband excitation pulses for efficient use of the magnetization. This study demonstrated that regions of tumor were differentially characterized from normal tissue by the lactate dynamics, where tumors showed later lactate detection and longer lactate duration that was statistically significant (P < 0.001). Compared to late-pathologic-stage tumors, early- to intermediate-stage tumors demonstrated significantly (P < 0.01) lower lactate total signal-to-noise ratio (SNR), with similar temporal dynamic parameters. Hyperpolarized pyruvate dynamics provided uptake, perfusion, and vascularization information on tumors and normal tissue. Large, heterogeneous tumors demonstrated spatially variable uptake of pyruvate and metabolic conversion that was consistent with cellularity and necrosis identified by histology. The results of this study demonstrated the potential of this new hyperpolarized MR dynamic method for improved cancer detection and characterization.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center