Format

Send to

Choose Destination
BMC Bioinformatics. 2010 Feb 24;11:104. doi: 10.1186/1471-2105-11-104.

Probe set filtering increases correlation between Affymetrix GeneChip and qRT-PCR expression measurements.

Author information

1
Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland. j.mieczkowski@nencki.gov.pl

Abstract

BACKGROUND:

Affymetrix GeneChip microarrays are popular platforms for expression profiling in two types of studies: detection of differential expression computed by p-values of t-test and estimation of fold change between analyzed groups. There are many different preprocessing algorithms for summarizing Affymetrix data. The main goal of these methods is to remove effects of non-specific hybridization, and to optimally combine information from multiple probes annotated to the same transcript. The methods are benchmarked by comparison with reference methods, such as quantitative reverse-transcription PCR (qRT-PCR).

RESULTS:

We present a comprehensive analysis of agreement between Affymetrix GeneChip and qRT-PCR results. We analyzed the influence of filtering by fraction Present calls introduced by J.N. McClintick and H.J. Edenberg (2006) and 2 mapping procedures: updated probe sets definitions proposed by Dai et al. (2005) and our "naive mapping" method. Because of evolution of genome sequence annotations since the time when microarrays were designed, we also studied the effect of the annotation release date. These comparisons were prepared for 6 popular preprocessing algorithms (MAS5, PLIER, RMA, GC-RMA, MBEI, and MBEImm) in the 2 above-mentioned types of studies. We used data sets from 6 independent biological experiments. As a measure of reproducibility of microarray and qRT-PCR values, we used linear and rank correlation coefficients.

CONCLUSIONS:

We show that filtering by fraction Present calls increased correlations for all 6 preprocessing algorithms. We observed the difference in performance of PM-MM and PM-only methods: using MM probes increased correlations in fold change studies, but PM-only methods proved to perform better in detection of differential expression. We recommend using GC-RMA for detection of differential expression and PLIER for estimation of fold change. The use of the more recent annotation improves the results in both types of studies, encouraging re-analysis of old data.

PMID:
20181266
PMCID:
PMC2841208
DOI:
10.1186/1471-2105-11-104
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center