Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2010 Nov 15;53(3):1103-8. doi: 10.1016/j.neuroimage.2010.02.020. Epub 2010 Feb 20.

On the genetic architecture of cortical folding and brain volume in primates.

Author information

1
Department of Genetics, Southwest Foundation for Biomedical Research, 7620 N.W. Loop 410, San Antonio, TX 78227, USA. jr13@bcm.tmc.edu

Abstract

Understanding the evolutionary forces that produced the human brain is a central problem in neuroscience and human biology. Comparisons across primate species show that both brain volume and gyrification (the degree of folding in the cerebral cortex) have progressively increased during primate evolution and there is a strong positive correlation between these two traits across primate species. The human brain is exceptional among primates in both total volume and gyrification, and therefore understanding the genetic mechanisms influencing variation in these traits will improve our understanding of a landmark feature of our species. Here we show that individual variation in gyrification is significantly heritable in both humans and an Old World monkey (baboons, Papio hamadryas). Furthermore, contrary to expectations based on the positive phenotypic correlation across species, the genetic correlation between cerebral volume and gyrification within both humans and baboons is estimated as negative. These results suggest that the positive relationship between cerebral volume and cortical folding across species cannot be explained by one set of selective pressures or genetic changes. Our data suggest that one set of selective pressures favored the progressive increase in brain volume documented in the primate fossil record, and that a second independent selective process, possibly related to parturition and neonatal brain size, may have favored brains with progressively greater cortical folding. Without a second separate selective pressure, natural selection favoring increased brain volume would be expected to produce less folded, more lissencephalic brains. These results provide initial evidence for the heritability of gyrification, and possibly a new perspective on the evolutionary mechanisms underlying long-term changes in the nonhuman primate and human brain.

PMID:
20176115
PMCID:
PMC3137430
DOI:
10.1016/j.neuroimage.2010.02.020
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center