Format

Send to

Choose Destination
Gastroenterology. 2010 Jun;138(7):2388-98, 2398.e1-2. doi: 10.1053/j.gastro.2010.02.010. Epub 2010 Feb 20.

Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy).

Author information

1
Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental School, Institute of Biomedical Research, Edgbaston, Birmingham, UK. janehartley@doctors.org.uk

Abstract

BACKGROUND & AIMS:

Trichohepatoenteric syndrome (THES) is an autosomal-recessive disorder characterized by life-threatening diarrhea in infancy, immunodeficiency, liver disease, trichorrhexis nodosa, facial dysmorphism, hypopigmentation, and cardiac defects. We attempted to characterize the phenotype and elucidate the molecular basis of THES.

METHODS:

Twelve patients with classic THES from 11 families had detailed phenotyping. Autozygosity mapping was undertaken in 8 patients from consanguineous families using 250,000 single nucleotide polymorphism arrays and linked regions evaluated using microsatellite markers. Linkage was confirmed to one region from which candidate genes were analyzed. The effect of mutations on protein production and/or localization in hepatocytes and intestinal epithelial cells from affected patients was characterized by immunohistochemistry.

RESULTS:

Previously unrecognized platelet abnormalities (reduced platelet alpha-granules, unusual stimulated alpha granule content release, abnormal lipid inclusions, abnormal platelet canalicular system, and reduced number of microtubules) were identified. The THES locus was mapped to 5q14.3-5q21.2. Sequencing of candidate genes showed mutations in TTC37, which encodes the uncharacterized tetratricopeptide repeat protein, thespin. Bioinformatic analysis suggested thespin to be involved in protein-protein interactions or chaperone. Preliminary studies of enterocyte brush-border ion transporter proteins (sodium hydrogen exchanger 2, sodium hydrogen exchanger 3, aquaporin 7, sodium iodide symporter, and hydrogen potassium adenosine triphosphatase [ATPase]) showed reduced expression or mislocalization in all THES patients with different profiles for each. In contrast the basolateral localization of Na/K ATPase was not altered.

CONCLUSIONS:

THES is caused by mutations in TTC37. TTC37 mutations have a multisystem effect, which may be owing to abnormal stability and/or intracellular localization of TTC37 target proteins.

PMID:
20176027
PMCID:
PMC3166659
DOI:
10.1053/j.gastro.2010.02.010
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center