Send to

Choose Destination
See comment in PubMed Commons below
Opt Express. 2010 Jan 4;18(1):63-71. doi: 10.1364/OE.18.000063.

Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films.

Author information

Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.


Optical transmission through concentric circular nanoslits is studied in experiments and numerical simulations. Polarized optical microscopic imaging shows that the optical transmission through these apertures is spatially inhomogeneous, exhibiting colored fan texture patterns. Numerical simulations show that these colored fan texture patterns originate from the cylindrical vector polarization of the transmitted beam. Specifically, the transmitted light is in-phase radially polarized at long wavelengths due to the predominant transmission of the transverse magnetic (TM) waveguide modes; and in-phase azimuthally polarized at short wavelengths due to the increased optical transmission of the transverse electric (TE) waveguide modes. Additionally, the transmission shows a peak at the wavelength of Wood anomaly and a dip at the resonant wavelength of surface plasmon excitation; and the transmitted light at these wavelengths is a mixture of azimuthally and radially polarized fields. These interesting optical transmission behaviors of circular nanoslits provide a miniaturized way to generating radially and azimuthally polarized light.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center