Format

Send to

Choose Destination
IEEE Trans Biomed Eng. 2010 Jun;57(6):1410-9. doi: 10.1109/TBME.2009.2039480. Epub 2010 Feb 17.

Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control.

Author information

1
Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia. rkhushab@eng.uts.edu.au

Abstract

Developing accurate and powerful electromyogram (EMG) driven prostheses controllers that can provide the amputees with effective control on their artificial limbs, has been the focus of a great deal of research in the past few years. One of the major challenges in such research is extracting an informative subset of features that can best discriminate between the different forearm movements. In this paper, a new dimensionality reduction method, referred to as orthogonal fuzzy neighborhood discriminant analysis (OFNDA), is proposed as a response to such a challenge. Unlike existing attempts in fuzzy linear discriminant analysis, the objective of the proposed OFNDA is to minimize the distance between samples that belong to the same class and maximize the distance between the centers of different classes, while taking into account the contribution of the samples to the different classes. The proposed OFNDA is validated on EMG datasets collected from seven subjects performing a range of 5 to 10 classes of forearm movements. Practical results indicate the significance of OFNDA in comparison to many other feature projection methods (including locality preserving and uncorrelated variants of discriminant analysis) with accuracies ranging from 97.66% to 87.84% for 5 to 10 classes of movements, respectively, using only two EMG electrodes.

PMID:
20172801
DOI:
10.1109/TBME.2009.2039480
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center