Format

Send to

Choose Destination
J Virol. 1991 May;65(5):2467-75.

Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins.

Author information

1
Molecular Viral Biology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892.

Abstract

The cleavages at the junctions of the flavivirus nonstructural (NS) proteins NS2A/NS2B, NS2B/NS3, NS3/NS4A, and NS4B/NS5 share an amino acid sequence motif and are presumably catalyzed by a virus-encoded protease. We constructed recombinant vaccinia viruses expressing various portions of the NS region of the dengue virus type 4 polyprotein. By analyzing immune precipitates of 35S-labeled lysates of recombinant virus-infected cells, we could monitor the NS2A/NS2B, NS2B/NS3, and NS3/NS4A cleavages. A polyprotein composed of NS2A, NS2B, and the N-terminal 184 amino acids of NS3 was cleaved at the NS2A/NS2B and NS2B/NS3 junctions, whereas a similar polyprotein containing only the first 77 amino acids of NS3 was not cleaved. This finding is consistent with the proposal that the N-terminal 180 amino acids of NS3 constitute a protease domain. Polyproteins containing NS2A and NS3 with large in-frame deletions of NS2B were not cleaved at the NS2A/NS2B or NS2B/NS3 junctions. Coinfection with a recombinant expressing NS2B complemented these NS2B deletions for NS2B/NS3 cleavage and probably also for NS2A/NS2B cleavage. Thus, NS2B is also required for the NS2A/NS2B and NS2B/NS3 cleavages and can act in trans. Other experiments showed that NS2B was needed, apparently in cis, for NS3/NS4A cleavage and for a series of internal cleavages in NS3. Indirect evidence that NS3 can also act in trans was obtained. Models are discussed for a two-component protease activity requiring both NS2B and NS3.

PMID:
2016768
PMCID:
PMC240601
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center