Send to

Choose Destination
See comment in PubMed Commons below
BMC Cell Biol. 2010 Feb 18;11:14. doi: 10.1186/1471-2121-11-14.

R-Ras regulates beta1-integrin trafficking via effects on membrane ruffling and endocytosis.

Author information

Dept of Pharmacology, Laboratory for Molecular Biology and University of Wisconsin Carbone Cancer Center, University of Wisconsin, 1525 Linden Dr, Madison, WI 53706, USA.



Integrin-mediated cell adhesion and spreading is dramatically enhanced by activation of the small GTPase, R-Ras. Moreover, R-Ras localizes to the leading edge of migrating cells, and regulates membrane protrusion. The exact mechanisms by which R-Ras regulates integrin function are not fully known. Nor is much known about the spatiotemporal relationship between these two molecules, an understanding of which may provide insight into R-Ras regulation of integrins.


GFP-R-Ras localized to the plasma membrane, most specifically in membrane ruffles, in Cos-7 cells. GFP-R-Ras was endocytosed from these ruffles, and trafficked via multiple pathways, one of which involved large, acidic vesicles that were positive for Rab11. Cells transfected with a dominant negative form of GFP-R-Ras did not form ruffles, had decreased cell spreading, and contained numerous, non-trafficking small vesicles. Conversely, cells transfected with the constitutively active form of GFP-R-Ras contained a greater number of ruffles and large vesicles compared to wild-type transfected cells. Ruffle formation was inhibited by knock-down of endogenous R-Ras with siRNA, suggesting that activated R-Ras is not just a component of, but also an architect of ruffle formation. Importantly, beta1-integrin co-localized with endogenous R-Ras in ruffles and endocytosed vesicles. Expression of dominant negative R-Ras or knock down of R-Ras by siRNA prevented integrin accumulation into ruffles, impaired endocytosis of beta1-integrin, and decreased beta1-integrin-mediated adhesion. Knock-down of R-Ras also perturbed the dynamics of another membrane-localized protein, GFP-VSVG, suggesting a more global role for R-Ras on membrane dynamics. However, while R-Ras co-internalized with integrins, it did not traffic with VSVG, which instead moved laterally out of ruffles within the plane of the membrane, suggesting multiple levels of regulation of and by R-Ras.


Our results suggest that integrin function involves integrin trafficking via a cycle of membrane protrusion, ruffling, and endocytosis regulated by R-Ras, providing a novel mechanism by which integrins are linked to R-Ras through control of membrane dynamics.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center