Send to

Choose Destination
Neurogastroenterol Motil. 2010 Jun;22(6):664-e203. doi: 10.1111/j.1365-2982.2010.01476.x. Epub 2010 Feb 16.

Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors.

Author information

Dipartimento di Biologia cellulare e dello Sviluppo, UniversitĂ  di Palermo, 90128 Palermo, Italy.



Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived peptide expressed in the enteroendocrine-L cells of small and large intestine and released in response to meal ingestion. Glucagon-like peptide-1 exerts inhibitory effects on gastrointestinal motility through vagal afferents and central nervous mechanisms; however, no data is available about a direct influence on the gastrointestinal wall. Our aim was to investigate the effects of GLP-1 on the spontaneous and evoked mechanical activity of mouse duodenum and colon and to identify the presence and distribution of GLP-1 receptors (GLP-1R) in the muscle coat.


Organ bath recording technique and immunohistochemistry were used.


Glucagon-like peptide-1 (up to the concentration of 1 mumol L(-1)) failed to affect spontaneous mechanical activity. It caused concentration-dependent reduction of the electrically evoked cholinergic contractions in circular smooth muscle of both intestinal segments, without affecting the longitudinal muscle responses. Glucagon-like peptide-1 inhibitory effect was significantly antagonized by exendin (9-39), an antagonist of GLP-1R. In both intestinal preparations, GLP-1 effect was not affected by guanethidine, a blocker of adrenergic neurotransmission, but it was significantly reduced by N(omega)-nitro-l-arginine methyl ester, inhibitor of nitric oxide (NO) synthase. Glucagon-like peptide-1 failed to affect the contractions evoked by exogenous carbachol. Immunohistochemistry demonstrated GLP-1R expression in the enteric neurons. Furthermore, 27% of GLP-1R immunoreactive (IR) neurons in the duodenum and 79% of GLP-1R-IR neurons in the colon, co-expressed nNOS.


The present results suggest that GLP-1 is able to act in the enteric nervous system by decreasing the excitatory cholinergic neurotransmission through presynaptic GLP-1Rs, which modulate NO release.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center