Send to

Choose Destination
Aging (Albany NY). 2009 Sep 10;1(9):803-17.

The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase.

Author information

Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA.


The RNA-binding protein tristetraprolin (TTP) regulates expression of many cancer-associated and proinflammatory factors through binding AU-rich elements (ARE) in the 3'-untranslated region (3'UTR) and facilitating rapid mRNA decay. Here we report on the ability of TTP to act in an anti-proliferative capacity in HPV18-positive HeLa cells by inducing senescence. HeLa cells maintain a dormant p53 pathway and elevated telomerase activity resulting from HPV-mediated transformation, whereas TTP expression counteracted this effect by stabilizing p53 protein and inhibiting hTERT expression. Presence of TTP did not alter E6 and E7 viral mRNA levels indicating that these are not TTP targets. It was found that TTP promoted rapid mRNA decay of the cellular ubiquitin ligase E6-associated protein (E6-AP). RNA-binding studies demonstrated TTP and E6-AP mRNA interaction and deletion of the E6-AP mRNA ARE-containing 3'UTR imparts resistance to TTP-mediated downregulation. Similar results were obtained with high-risk HPV16-positive cells that employ the E6-AP pathway to control p53 and hTERT levels. Furthermore, loss of TTP expression was consistently observed in cervical cancer tissue compared to normal tissue. These findings demonstrate the ability of TTP to act as a tumor suppressor by inhibiting the E6-AP pathway and indicate TTP loss to be a critical event during HPV-mediated carcinogenesis.


AU-rich element; E6-AP; HPV; senescence; tristetraprolin

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Impact Journals, LLC Icon for PubMed Central
Loading ...
Support Center