Format

Send to

Choose Destination
See comment in PubMed Commons below
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 27;365(1542):933-43. doi: 10.1098/rstb.2009.0220.

Seasonal hippocampal plasticity in food-storing birds.

Author information

1
Department of Psychology, Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada. sherry@uwo.ca

Abstract

Both food-storing behaviour and the hippocampus change annually in food-storing birds. Food storing increases substantially in autumn and winter in chickadees and tits, jays and nutcrackers and nuthatches. The total size of the chickadee hippocampus increases in autumn and winter as does the rate of hippocampal neurogenesis. The hippocampus is necessary for accurate cache retrieval in food-storing birds and is much larger in food-storing birds than in non-storing passerines. It therefore seems probable that seasonal change in caching and seasonal change in the hippocampus are causally related. The peak in recruitment of new neurons into the hippocampus occurs before birds have completed food storing and cache retrieval for the year and may therefore be associated with spacing caches, encoding the spatial locations of caches, or creating a neuronal architecture involved in the recollection of cache sites. The factors controlling hippocampal plasticity in food-storing birds are not well understood. Photoperiodic manipulations that produce change in food-storing behaviour have no effect on either hippocampal size or neuronal recruitment. Available evidence suggests that changes in hippocampal size and neurogenesis may be a consequence of the behavioural and cognitive involvement of the hippocampus in storing and retrieving food.

PMID:
20156817
PMCID:
PMC2830249
DOI:
10.1098/rstb.2009.0220
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center