Send to

Choose Destination
J Exp Biol. 2010 Mar 1;213(5):740-8. doi: 10.1242/jeb.037929.

Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals.

Author information

Department of Biological Sciences, University of Alaska, Anchorage, AK 99508, USA.


In diving animals, skeletal muscle adaptations to extend underwater time despite selective vasoconstriction include elevated myoglobin (Mb) concentrations, high acid buffering ability (beta) and high aerobic and anaerobic enzyme activities. However, because cardiac muscle is perfused during dives, it may rely less heavily on Mb, beta and anaerobic pathways to support contractile activity. In addition, because cardiac tissue must sustain contractile activity even before birth, it may be more physiologically mature at birth and/or develop faster than skeletal muscles. To test these hypotheses, we measured Mb levels, beta and the activities of citrate synthase (CS), beta-hydroxyacyl-CoA dehydrogenase (HOAD) and lactate dehydrogenase (LDH) in cardiac and skeletal muscle samples from 72 harp and hooded seals, ranging in age from fetuses to adults. Results indicate that in adults cardiac muscle had lower Mb levels (14.7%), beta (55.5%) and LDH activity (36.2%) but higher CS (459.6%) and HOAD (371.3%) activities (all P<0.05) than skeletal muscle. In addition, while the cardiac muscle of young seals had significantly lower [Mb] (44.7%) beta (80.7%) and LDH activity (89.5%) than adults (all P<0.05), it was relatively more mature at birth and weaning than skeletal muscle. These patterns are similar to those in terrestrial species, suggesting that seal hearts do not exhibit unique adaptations to the challenges of an aquatic existence.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center