Send to

Choose Destination
J Exp Biol. 2010 Mar 1;213(5):694-706. doi: 10.1242/jeb.035436.

Biomechanics of locomotion in Asian elephants.

Author information

Unité de physiologie et de biomécanique de la locomotion, IEPR, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium.


Elephants are the biggest living terrestrial animal, weighing up to five tons and measuring up to three metres at the withers. These exceptional dimensions provide certain advantages (e.g. the mass-specific energetic cost of locomotion is decreased) but also disadvantages (e.g. forces are proportional to body volume while supportive tissue strength depends on their cross-sectional area, which makes elephants relatively more fragile than smaller animals). In order to understand better how body size affects gait mechanics the movement of the centre of mass (COM) of 34 Asian elephants (Elephas maximus) was studied over their entire speed range of 0.4-5.0 m s(-1) with force platforms. The mass-specific mechanical work required to maintain the movements of the COM per unit distance is approximately 0.2 J kg(-1) m(-1) (about 1/3 of the average of other animals ranging in size from a 35 g kangaroo rat to a 70 kg human). At low speeds this work is reduced by a pendulum-like exchange between the kinetic and potential energies of the COM, with a maximum energy exchange of approximately 60% at 1.4 m s(-1). At high speeds, elephants use a bouncing mechanism with little exchange between kinetic and potential energies of the COM, although without an aerial phase. Elephants increase speed while reducing the vertical oscillation of the COM from about 3 cm to 1 cm.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center