Format

Send to

Choose Destination
See comment in PubMed Commons below
J Infect Dis. 2010 Mar 15;201(6):855-65. doi: 10.1086/651019.

Dissection of the molecular basis for hypervirulence of an in vivo-selected phenotype of the widely disseminated M1T1 strain of group A Streptococcus bacteria.

Author information

1
Department of Veterans Affairs Medical Center, Research Service, University of Tennessee Health Science Center, Memphis, TN 38104, USA. rkansal@uthsc.edu

Erratum in

  • J Infect Dis. 2010 Jun 1;201(11):1778-80.

Abstract

Group A streptococci (GAS) may engage different sets of virulence strategies, depending on the site of infection and host context. We previously isolated 2 phenotypic variants of a globally disseminated M1T1 GAS clone: a virulent wild-type (WT) strain, characterized by a SpeB(+)/SpeA(-)/Sda1(low) phenotype, and a hypervirulent animal-passaged (AP) strain, better adapted to survive in vivo, with a SpeB(-)/SpeA(+)/Sda1(high) phenotype. This AP strain arises in vivo due to the selection of bacteria with mutations in covS, the sensor part of a key 2-component regulatory system, CovR/S. To determine whether covS mutations explain the hypervirulence of the AP strain, we deleted covS from WT bacteria (DeltaCovS) and were able to simulate the hypervirulence and gene expression phenotype of naturally selected AP bacteria. Correction of the covS mutation in AP bacteria reverted them back to the WT phenotype. Our data confirm that covS plays a direct role in regulating GAS virulence.

PMID:
20151844
DOI:
10.1086/651019
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center